

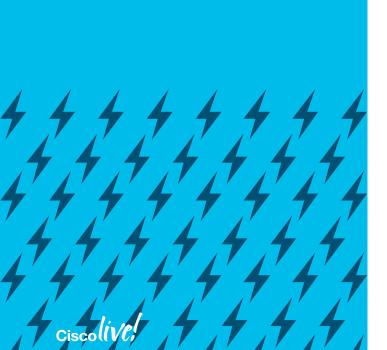
Building 5G xHaul Transport Network

Waris Sagheer, Principal 5G Product Manager BRKSPG-2680

cs.co/ciscolivebot#BRKSPG-2680

Cisco Webex Teams 🥥

Questions?

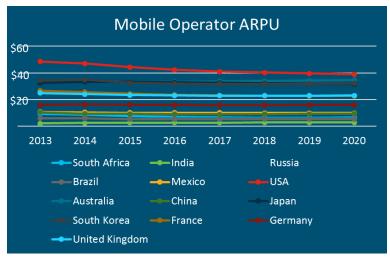

Use Cisco Webex Teams (formerly Cisco Spark) to chat with the speaker after the session

How

- 1 Open the Cisco Events Mobile App
 - Find your desired session in the "Session Scheduler"
- Click "Join the Discussion"
 - Install Webex Teams or go directly to the team space
- Enter messages/questions in the team space

Agenda

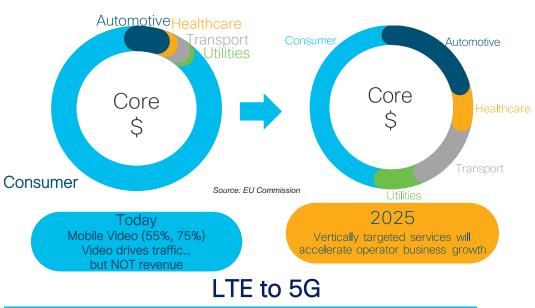
- Introduction
- 5G Transport Requirement
- Cisco 5G xHaul Transport Vision and Strategy
- Cisco Converged SDN 5G Transport Solution
- Customer case studies
- Helpful Links


Glossary

- UE (User Equipment)
- RU (Radio Unit) RAN (Radio Access Network)
- BBU (Baseband Unit)
- EPC (Evolved Packet Core)
- CSR (Cell Site Router)
- C-RAN (Centralised RAN)
- Remote Radio Head (RRH)

- TRxP (Transmit Receive Point)
- vEPC (Virtual EPC)
- CU-CP (Centralised RAN Control Plane)
- CU-UP (Centralised Unit User Plane)
- SR (Segment Routing)
- MEC (Multi-access Edge Compute)

- xHaul (Backhaul + Midhaul + Sidehaul + Fronthaul)
- FH Agg (Fronthaul Aggregation Router)
- FH Access (Fronthaul Access Router)
- D-RAN (Distributed RAN)
- mmW (>24GHz)
- Sub 6Hz (Below 6GHz e.g. 600 MHz, 3.5GHz)


Business Landscape

Source: Informa ARPU, March 2017

- <u>Overall</u> mobile ARPUs have been flat or declining:
 - Pressure to drive greatest efficiency in delivering 5G
 - Pressure to expand beyond consumer services

Ciscolive;

Emergence of Low Latency Need for better QOE and to Enable New Applications

5G - Key Use Case Categories

Enhanced Mobile Broadband (inc. Fixed Wireless Access)

- Extra capacity delivered through new 5G frequency bands
- Not too concerned with connection density or latency.

Massive Machine Type Communication

• Focused on low power wide area NB-IoT with high connection density and energy efficiency

Ultra-Reliable Low Latency Communication

- For mission critical use cases (self driving, Public safety, ...)
- Desired 1ms access time only refers to radio interface and would be most useful in near field mission critical apps

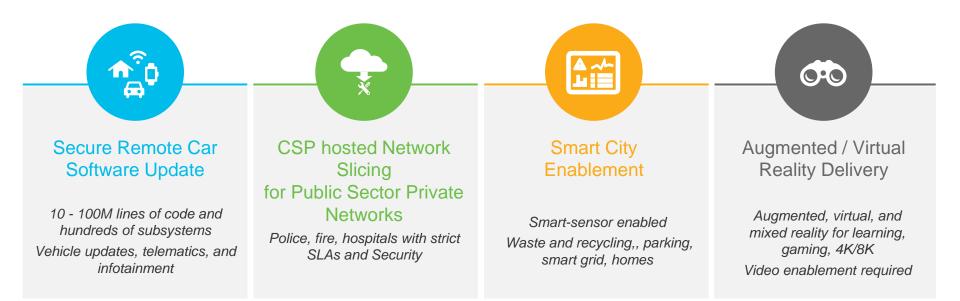
Emerging - Low Latency

Ciscolive!

Low latency applications, entertainment

Push data plane to the edge, Intelligence in Network

#CLMEL


Increased Bandwidth and Capacity

Scale, Slicing, Flexible deployment, NFV/Virtualisation

Push data plane to the edge, Intelligence in Network

Source: Recommendation ITU-R M.2083

5G eMBB Use Case is now live!

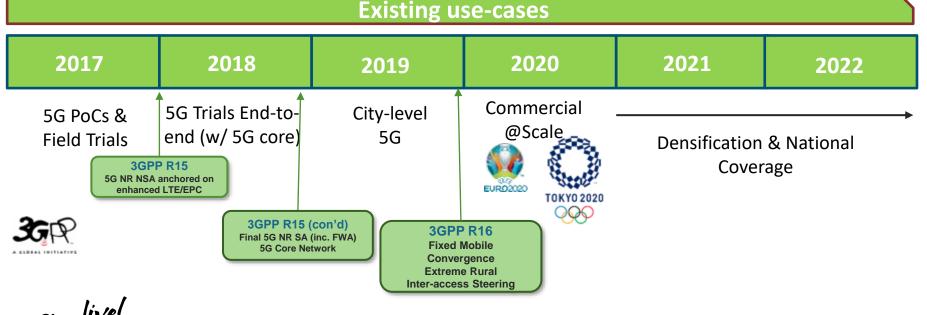
Verizon's 5G

- Residential broadband services in Houston, Indianapolis, Los Angeles, and Sacramento went live on October 1, 2018
- Uses TDD technology in 28 GHz
- Average 300 Mbps with peak speeds up to 1 Gbps

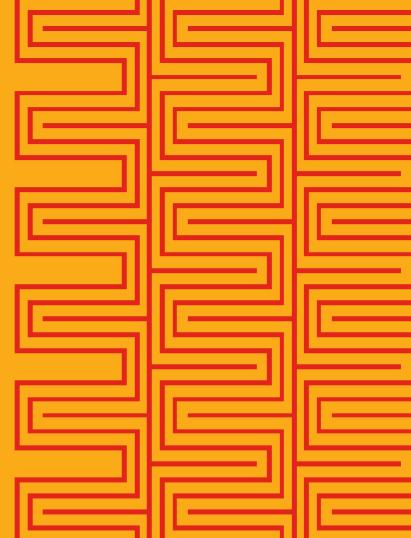
AT&T Launches Mobile 5G in 12 Markets

- 5G Mobile services enabled on Dec. 21st, 2018 across 12 cities
- Using Sub 6 GHz spectrum to support mobility; plan to roll my mmWave in 2020
- Peak rate of 400Mbps; Usage based service

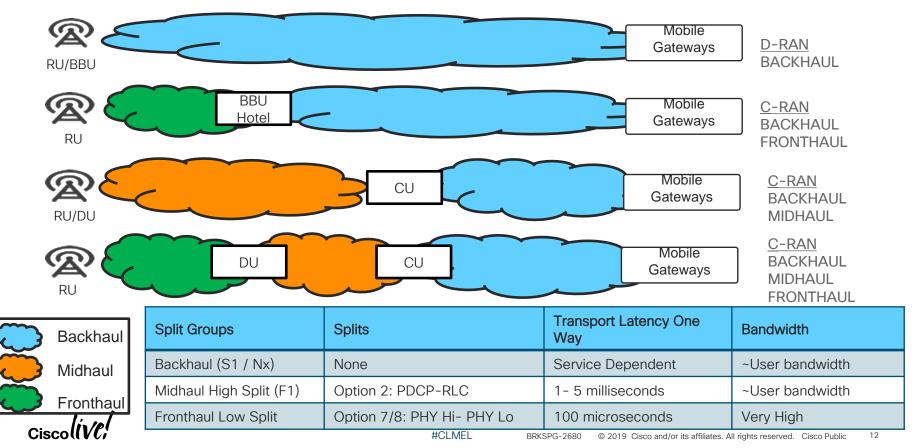
Korea operators turn on commercial 5G networks


- SK Telecom, KT, and LG Uplus simultaneously turned on 5G on December 1, 2018
- Require 5G mobile routers with 5G handsets planned for March 2019

Timeline to 5G @ Scale


New use-cases

Evolved use-cases



5G Transport Requirement



5G RAN Architecture Evolution

You will hear about 5G Option Splits...

Mobile Core and RAN splits

Ciscolive,

Fronthaul Standards

CPRI

Common Public Radio Interface

• CPRI

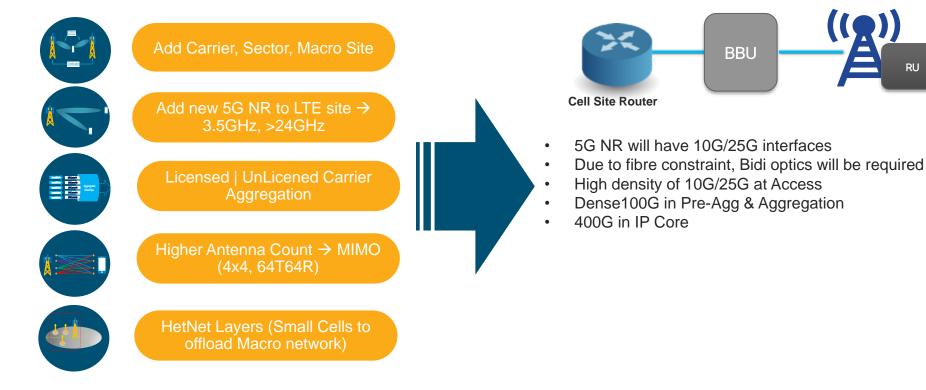
(Common Public Radio Interface definition to connect RE & REC)

eCPRI

(Next version of CPRI, connect eRE and eREC over packet based transport)

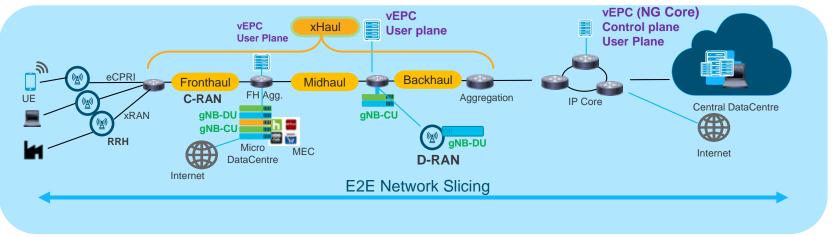
XRAN

- Formed to standardise critical elements of proprietary RAN architectures
- Defines Open Specifications for vendor interoperability



 1914.1 ROE
 1914.3 NGFI
 (Defines encapsulation and mapping of Radio protocol over ethernet; including Fronthaul functional split definition)

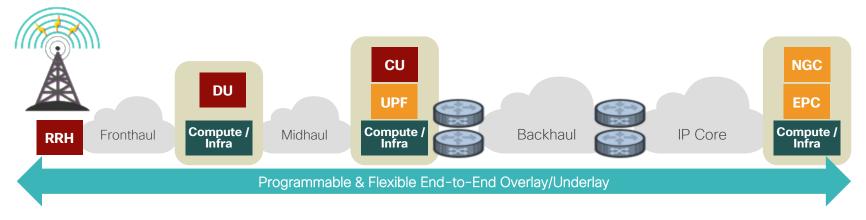
• 802.1CM (Specifies TSN profiles for Fronthaul)


RAN Evolution Impact on Transport

#CLMEL

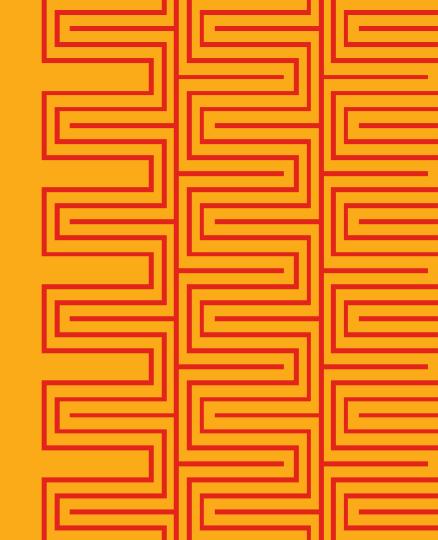
RU

5G E2E Network Transport Evolution


- Centralised Services, <u>North-South</u> traffic
- <u>Centralised DC</u>
- <u>Separate</u> wireline & wireless network

- Flexible Service Placement, <u>East-West</u> traffic
- Edge DC or Edge Compute (MEC)
- <u>Converged</u> network: wireline & wireless

E2E IP is Critical to achieve 5G Transport Requirement


Any-to-Any connectivity - Flexible service placement Reduce Network touch points Soft Network Slicing End-to-End Security

Cisco 5G xHaul Transport Vision and Strategy

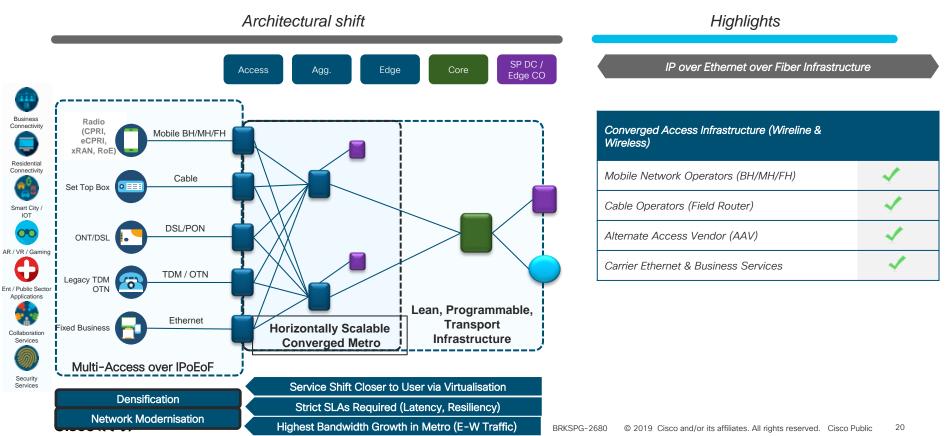
5G xHaul Transport Strategy

Programmable, Massive Bandwidth Portfolio

Converged · Simple (E2E XR) . Mass Scale · Resiliency · Secure · Flexible Service Placement

Network Slicing

Differentiated Services • Robust SLA • Optimal Infrastructure Efficiency



Open vRAN and Packet-Based Fronthaul

Stat-muxing • Wireline and Any-G Mobile • A la Carte RAN Procurement

Converged Networks

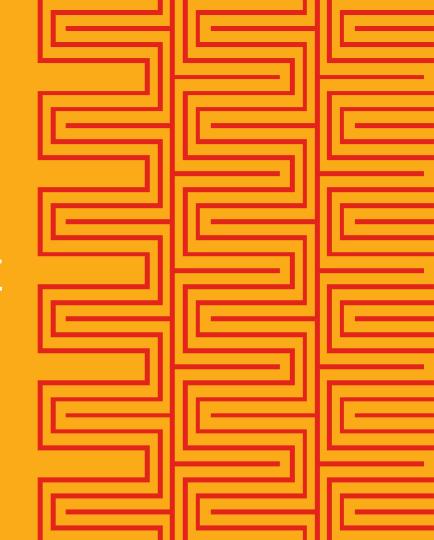
Financial Opportunities

Revenue Opportunities

Network slicing as a Service Endless Multi-access Edge Compute Use Cases

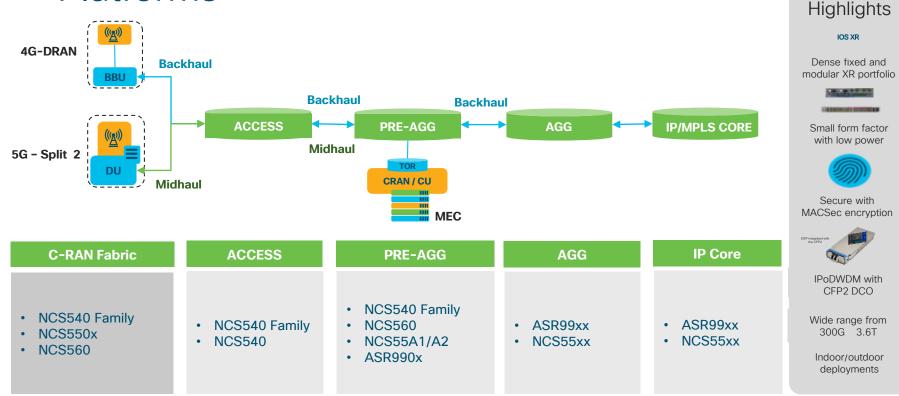
Resource Utilisation

Stat-Muxing • Multi-Services • Converged Applications


Operating Efficiencies

Simplification • Scale • Resiliency • Latency

Cisco Converged SDN 5G Transport Solution



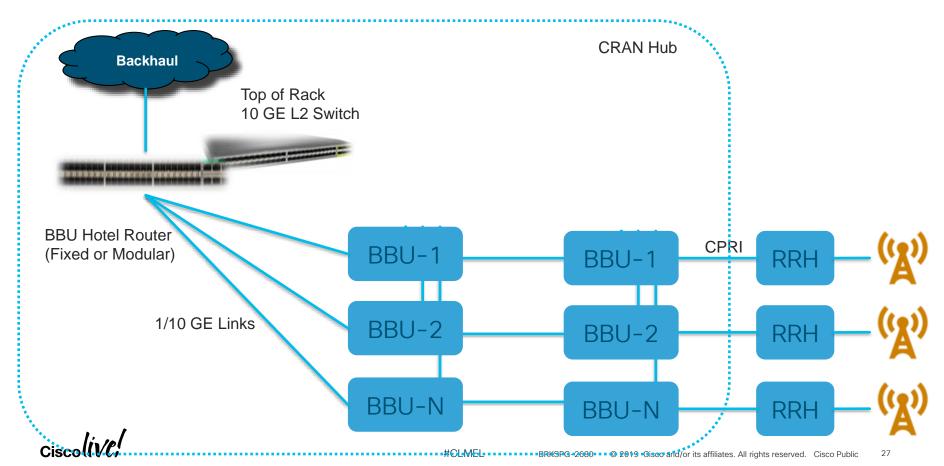
Cisco's 5G xHaul Transport Solution

- A single converged packet network infrastructure supporting fixed and mobile services
- 500,000 total network nodes
- Support various 4G / 5G RAN architectures and radio splits
- Support for 5G use cases (eMMB, uRLLC, mMTC)
- Multi-Access Edge Compute (MEC) simply integrated into network fabric
- Concurrent support in transport network for soft transport slicing

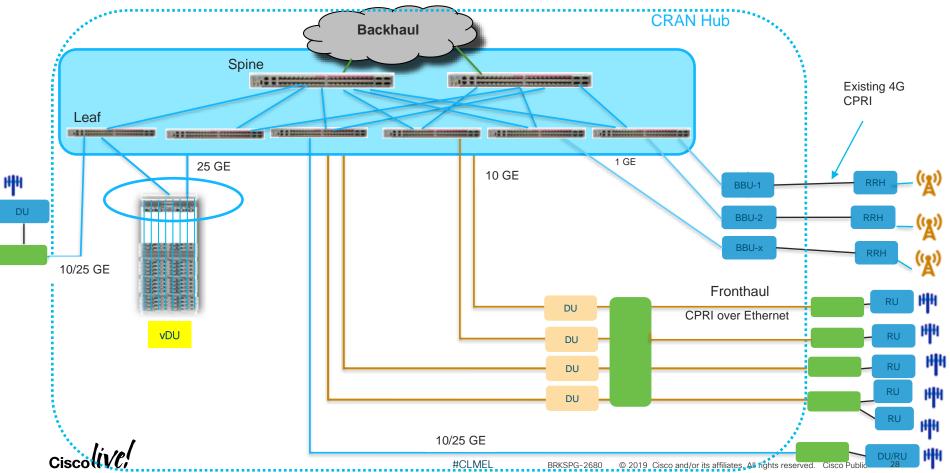
"5G Ready" Backhaul and Midhaul Hardware Platforms

Why Centralised or Cloud RAN (C-RAN)?

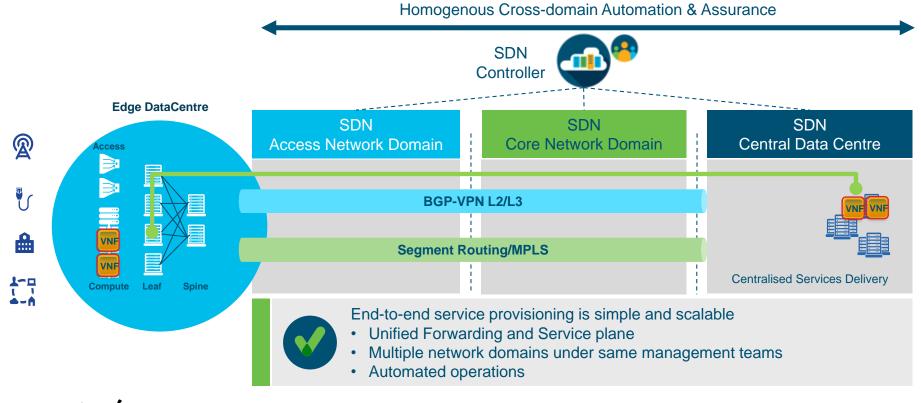
Benefits					
Spectral Efficiency Gains Benefits	Operational Simplicity Benefits (CAPEX/OPEX)				
COMP/eICIC - Increasing capacity and improving performance at cell edges	Reduce power/space overheads – enable Skinny Macro Sites deployments (utility poles, rooftops)				
Carrier Aggregation - creating more bandwidth on individual devices by combining the usage of multiple bands	Ease of management (Reduce Cell site management by up to 60%)				
Enhanced Radio unit Management and Policy	Enhanced optimisation				
Inter-site BBU Pooling	Improved resource efficiency & efficient utilisation of resources				
	Benefit of commoditisation (up to 50%)				
	Improved policy management & Security				



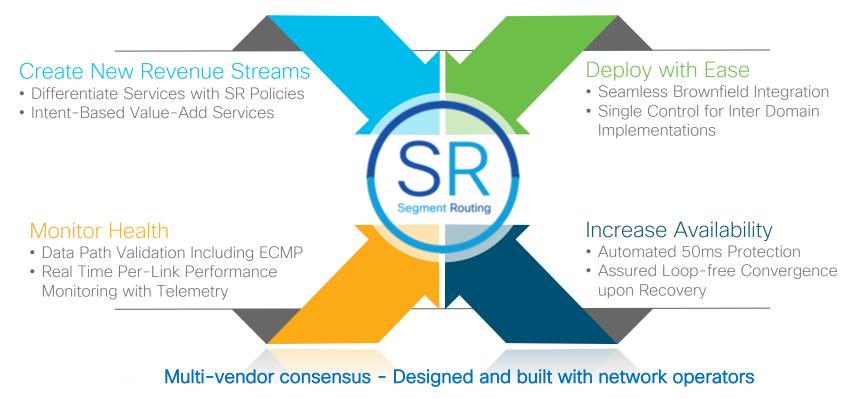
C-RAN Transport Architecture Components


- Baseband Hotel Router depending on the size of BBU Hotel
 - Fixed
 - Modular
- Low latency L2 switch in case of solution like Ericsson's Elastic RAN
- Cisco Solution combines above two functionalities into single node cost saving
- 1588/SyncE Phase & Frequency clocking support
- Interface Flexibility 1/10/25G/100G
- Horizontal Scaling for large sites
- Redundancy

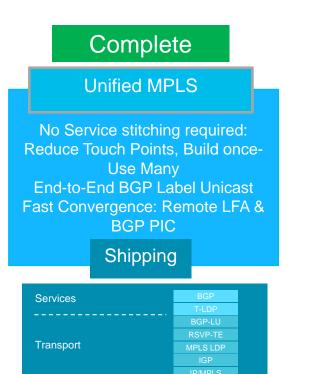
C-RAN Transport Architecture Components


Cisco C-RAN Fabric Architecture

C-RAN (BBU Hotel Router + L2 Switch) Portfolio


Fixed Platform	Space (RU)	Capacity	Port Density	Timing 1588/Sync-I	FCS	
NCS 5501 (SE)	1	800 Gbps	Base: 48x 1/10G + 6x 100G Scale: 40x 1/10G + 4x 100G	Scale only	Shipping	
NCS-55A1-36H-SE	1	3.6 Tbps	36 x QSFP28 or QSFP+	Y	Shipping	
NCS-55A1-24H	1	1.8 Tbps	24 x QSFP28	Y	Shipping	
NCS55A1-48Q6H (Bifrost) NCS-55A1-48TQ6H (Turin)	1	1.8 Tbps 900 G	48 x SFP28 + 6x100G QSFP28 24x1G/10G ports, 24x1G/10G/25G ports & 6x100G	Υ	H1CY19	MEC - Edge Compute ToR
NCS 540	1	300 Gbps	24x 10GE SFP+ + 8x 25GE SFP28 + 2x 100GE QSFP28	Y	Shipping	MEC - Edge Compute ToR
NCS-55A2-MOD (SE)	2	900 Gbps	Fixed Ports: 24 x 1/10G & 16 x 1/10/25G 2 x MPAs of 400 Gbps each:	Y	Shipping	
Modular Platform	7 slot	900 Chro	Modular. 4 x 100G QSFP28, 40 x 10G SFP+, 96 x 1G CSFP	Y	Shipping	
	4 slot	800 Gbps 800 Gbps	Modular. 4 x 100G QSFP28, 32 x 10G SFP+ or 72 x 1G CSFI	ΡY	Q2CY19	
Ciscoliv	C;		#CLMEL BRK	SPG-2680 © 2	019 Cisco and/or it	ts affiliates. All rights reserved. Cisco Public 29

5G xHaul Programmable Transport



Ciscolive!

Segment Routing: Value Proposition

Forwarding Plane Evolution

In Progress

MPLS SR with Controller

MPLS SR: optimised and simplified routing Centralised management and orchestration Distributed control plane

Work in Progress

Future

SRv6 with Controller Further simplification and scaling NFV Centralised management and orchestration

Future

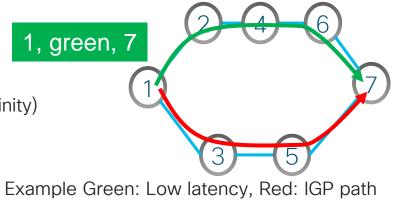
Services			
		IGP	SDN
Transport		IPv6/SR	

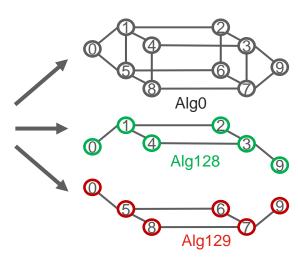
32

SR: Engineering the Underlay

Flex-Algorithm

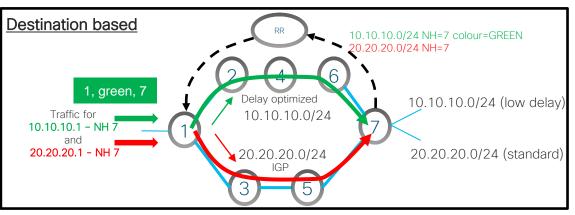
Builds domain level forwarding tables

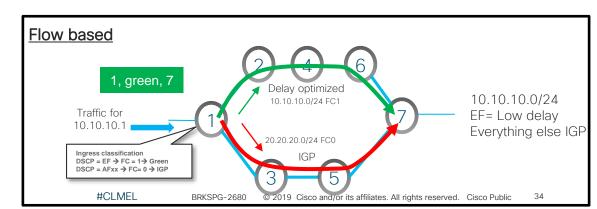

IGP distributes multiple metrics / affinities


Multi-algorithms operational in network

SPF, Low Latency, constrained nodes / links (customer chooses) TiLFA per algorithm

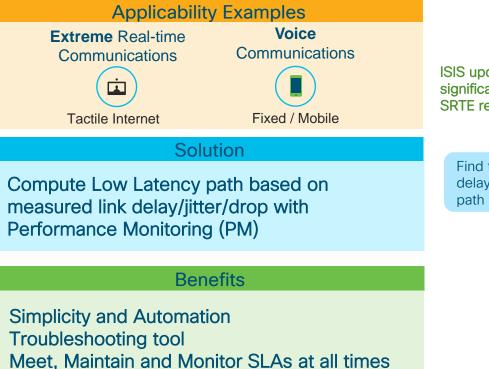
- SR Policies (or SR-TE)
 - Builds paths between nodes
 - Path computation based multiple constraints (b/w, latency, affinity)
 - Calculated by head-ends or an SR-PCE
 - Multi-domain / disjoint paths require SR-PCE

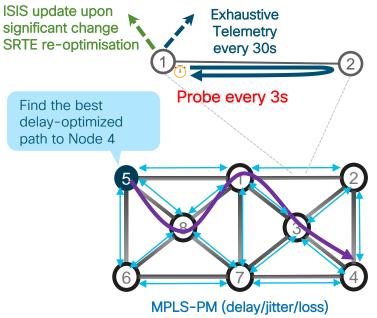




SR – Service Aware Traffic Steering

Traffic Steering


- Mechanism on source router to steer traffic
- By default traffic uses IGP path
- Can steer traffic into a SR policy or specific Flex-algos
- Destination TS : destination only
- Flow based TS : destination + QoS criteria



Real-Time Low Delay services

MPLS Performance Monitoring (PM)

SR Path Computation Element (SR-PCE)

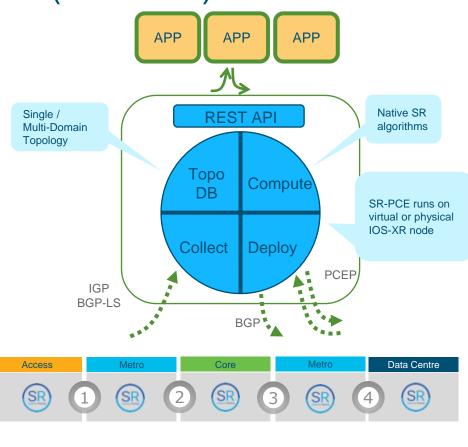
SRTE Head-End

Distributed Mode – SR-TE Head-End Visibility is limited to its own IGP domain

Solution

Multi-Domain SRTE Visibility Centralised SR-PCE for Multi-Domain Topology view

Integration with Applications

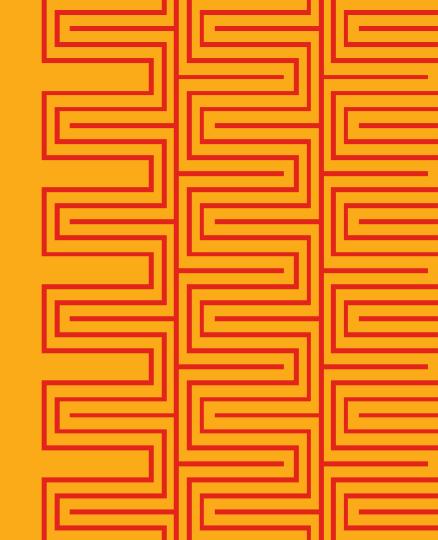

North-bound APIs for topology/deployment

Delivers **across the unified SR Fabric** the SLA requested by the service

Benefits

Simplicity and Automation

- End-to-End network topology awareness
- SLA-aware path computation across network domains Disjoint paths
- Multi-domain path computation and ODN



"LTE to 5G" Transport Summary

5G Services	Enhanced Mobile Broadband (eMBB)	Massive Machine Types Communications (mMTC)	Ultra-Reliable and Low Latency Communications (URLLC)				
Service Orchestration & Programmability	Cisco Crosswork and Segment Routing PCE						
Service	Ethernet VPN (EVPN) and L3VPN						
Transport	Programmable SR Fabric Segment Routing (SR MPLS / SRv6) & SR PM Clocking (1588/SyncE – Phase and Frequency)						

Timing and Synchronisation

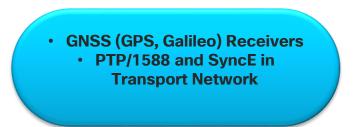
Why Synchronisation?

Audio / Video Voice Communications

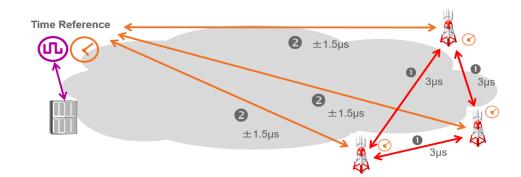
- Audible clicks
- Latency (echo)
- Dropped calls
- Corrupted Video
- Loss of Frame
- Audio Video mis-alignment

Wireless Networks

- Seamless Handover
- Interference (elCIC)
- CoMP
- Carrier Aggregation
- Dual Connectivity
- Location Accuracy

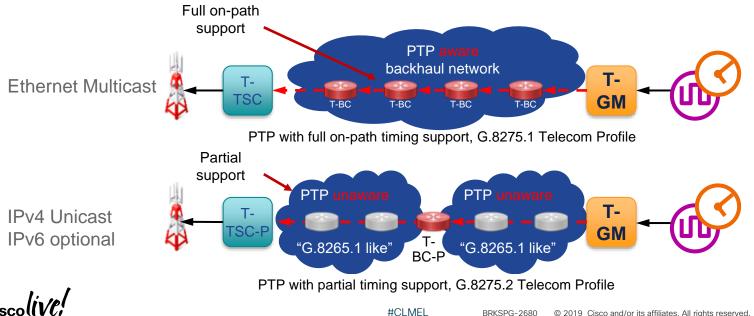


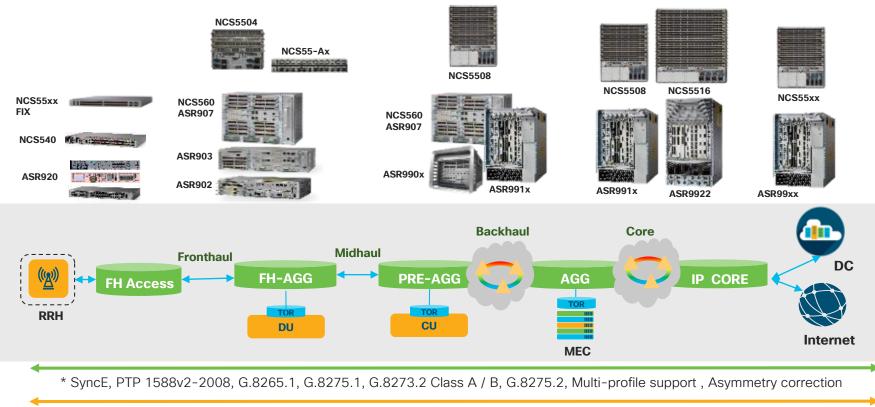
Application Impacted


- Location Services
- Industrial Automation
- Smart grid
- IoT
- Network Monitoring

Timing and Synch – New Phase Requirements

- 5G (like modern LTE-A networks) requires phase synchronisation
- New 5G TDD radios definitely require it:
 - 3GPP: 3µs between base stations (for TDD, LTE-A radio co-ordination)
 - ❷ Radio backhaul network: ±1.5µs from reference time
- 5G Timing and Synch Fronthaul (eCPRI, xRAN, RoE)


PTP/SyncE as a backup to GNSS receiver outages GNSS where it's cost effective, PTP everywhere else

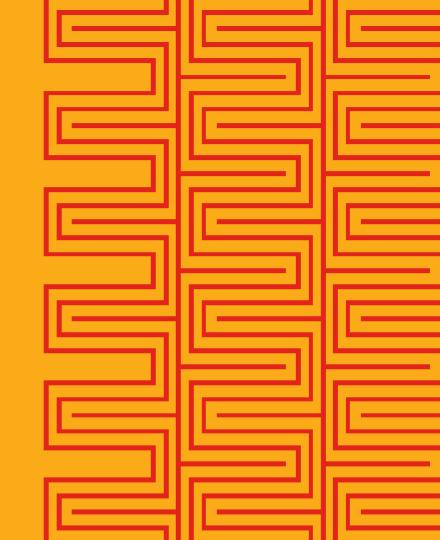


Timing and Synch – PTP Profiles for Phase

- There are various profiles available for use
 - Most operators looking at G.8275.1 the best timing solution
 - Supported across Cisco ASR900, ASR920, NCS500, NCS5500, ASR9K range

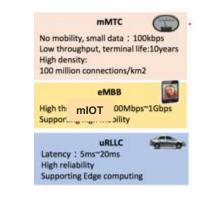
Cisco Timing and Synchronisation Strong Feature support and roadmap

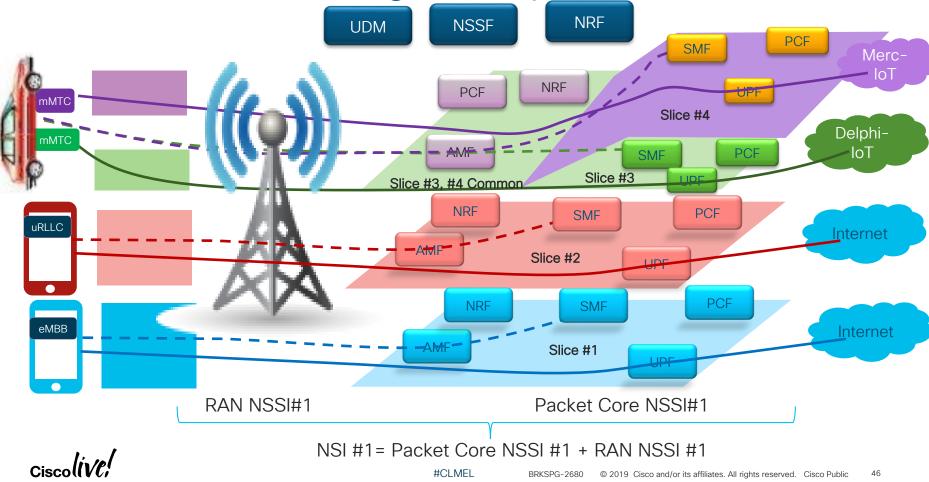
* Roadmap: eEEC, PRTC-B, Class C


802.1Qbu (TSN) Requirement

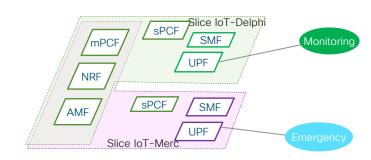
- 802.1CM Profile A: Strict Priority & Profile B:802.1Qbu Frame Preemption
- Converged platform will have mix of fronthaul and enterprise traffic towards NNI.
 - FH radio traffic can get behind jumbo-packets of enterprise flows (9600 bytes) leading to additional latency
- 802.1Qbu should only be supported on uplink interfaces only and will be supported on 1G/10G/25G interfaces
- Strict Priority + Preemption Offers lowest fronthaul latency and greatest BW utilisation
- 802.1Qbu is NOT required on 100G interface
- Frame Preemption is a book-ended solution

Port Rate	Without Frame Preemption delay (1500 byte delay)	Without Frame Preemption delay (9600 byte delay)	With Frame Preemption (123 byte delay)	Frame Preemption Advantage (compared to 9600 byte delay)	
1G	12,000 nsec	76,800 nsec	984 nsec	~ 75 usec	
10G	1,200 nsec	7,680 nsec	98.4 nsec	~ 7.5 usec	
25G	480 nsec	3,072 nsec	39.36 nsec	~3 usec	
100G	120 nsec	768 nsec	9.84 nsec	758 nsec	
Ciscoliv	<i>i</i> c!	#CLMEL	BRKSPG-2680 © 2019 Cisco and/or its a	filiates. All rights reserved. Cisco Public 43	


Network Slicing



Why Slice?


- Isolation of traffic for different SP Customers
 - · Customers may be different enterprises
- Create core-networks, transport and RAN slices tailored to meet KPIs of specific services
 - Three main service families:
 - mIOT services
 - eMBB services
 - uRLLC services
- Network Slice Instance (NSI)
 - Aggregate of several NSSI
- Network Slice Subnet Instance (NSSI)
 - · Group of network function instances belong to a NSI
 - E.g. NSI #1=Packet NSSI #1 + RAN NSSI #1

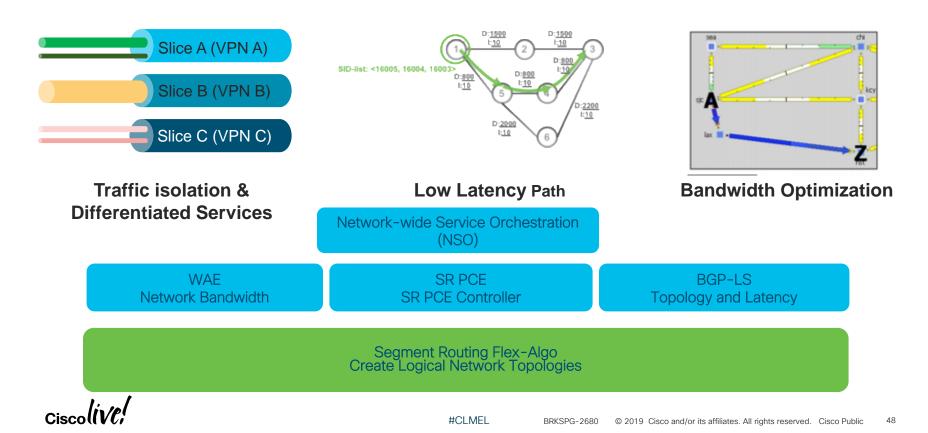


3GPP Network Slicing Concept

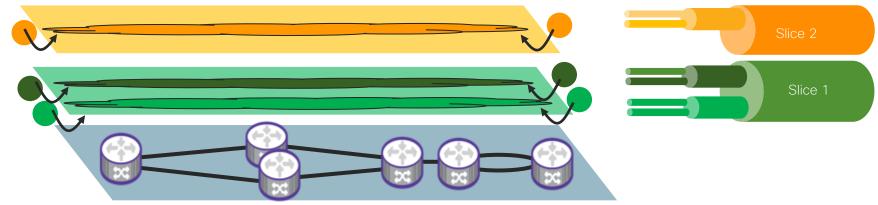
UDM

Slice Differentia SP456 SP103 SP007 SP002 SP001 SP225	ator DNN Ent_Mon Ent_Eme Ent_Surv SP_Inter SP_IMS Ent_Low	rgency reillance net	<u>SST</u> 3 1 1	Slice Differen SP456 SP103 SP007 SP002	En En En	NN
Subscribed Slice IDs		Configured Slice IDs				
			Slice	ID		
	Slice T	уре		Slice Differentiator		
	1 byte			3 bytes		
	Slic	Slice Type		Slice Type	Value	
	eMBB			1		
	URLLC			2		
	mloT		3			
		Slide ID Slide ID Set		= S-NSSAI = NSSAI		
	S-NSSAI:	-NSSAI: Single Network Slice Selection Information				

#CLMEL


<u>SST</u> 3

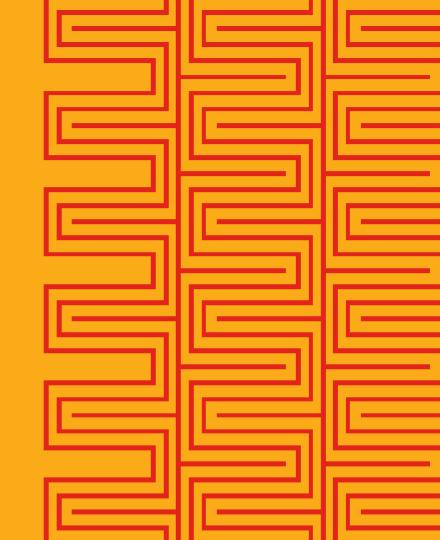
3


2

ЫT

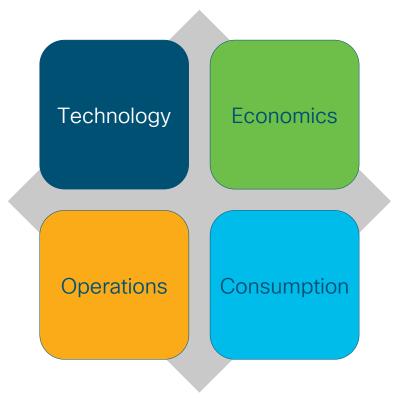
Cisco Soft Network Slicing Transport Solution

Mapping Customers to Underlay Slice Planes



- L2/L3 VPNs used for customer and service separation
- Potentially large numbers
- Traffic classified and controlled on ingress
- Automated Steering place VPN traffic into correct underlay slice plane

Cisco Open vRAN



Open vRAN Ecosystem Overview

Accelerate the viability and adoption of open virtualised RAN (vRAN) solutions and ensure their extension into a broader softwaredefined network architecture

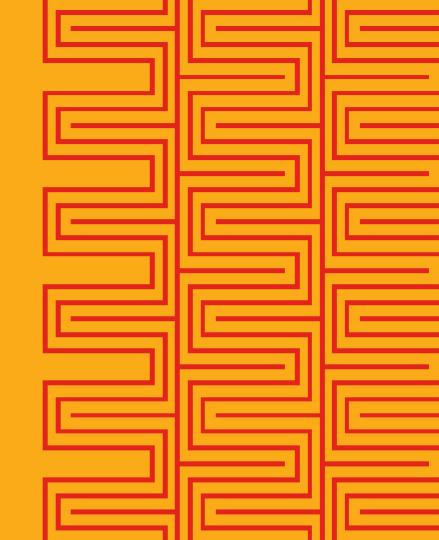
Provide Architectural Optionality

Open vRAN Ecosystem Overview

* PHAZR Acquired by JMA December 2018

BRKSPG-2680 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 52

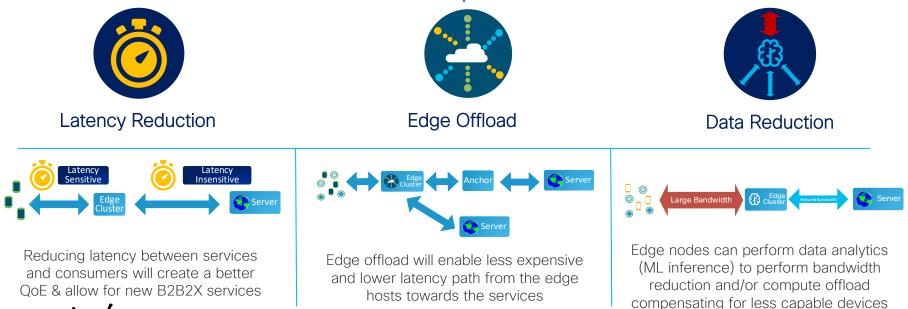
- Operator-Led Industry Alliance
- Key Principles Open and Intelligent
- Publishing Specifications, conducting testing, PoCs, etc



- Vendor-led, Operator-driven
- Aligned with O-RAN principles
- Many members contributing to O-RAN specifications, testing, etc
- Accelerating innovation and bringing solutions to market
- Considering additional dimensions of economics, operations, consumption

Cisco((VC;

Multi-Access Edge Compute



Multi-Access Edge Computing (MEC)

MEC or Edge Computing, is the architectural principle of moving services to locations where they can (1) have lower latency to the device for QoE (2) implement offload for greater efficiency (3) perform computations that augment the capabilities of devices and reduce cost

of transport

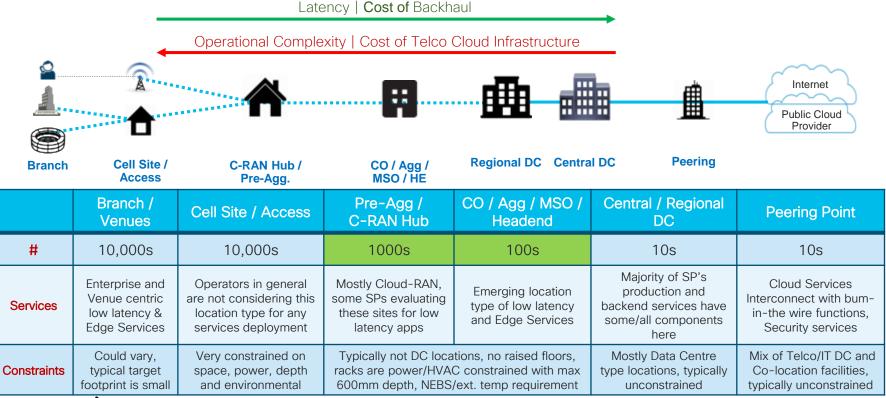
Edge Computing Use Cases

RAN Architecture: with decomposition of RAN, edge clouds will be deployed

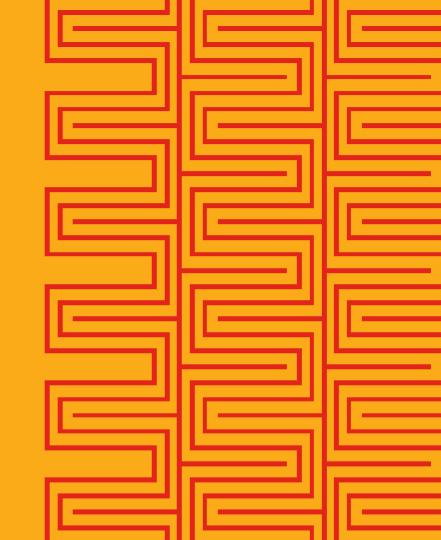
Automation: enables "lights-out" low OPEX services and is essential for APIs to work

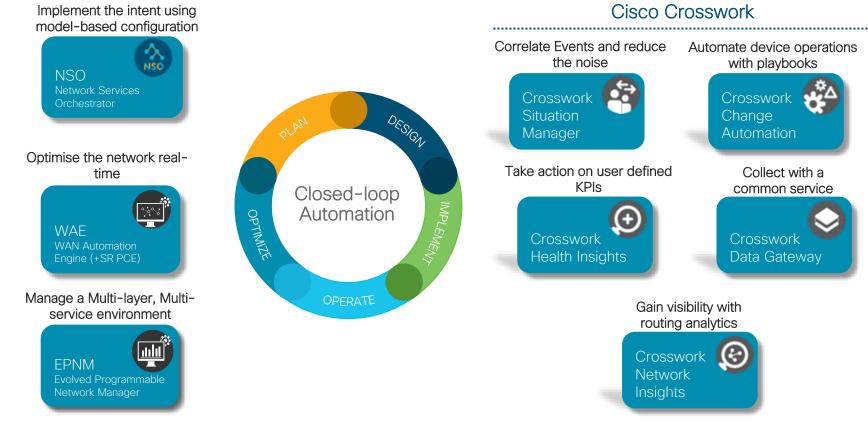
Fixed & Mobile Terminations: with decomposition of fixed & mobile subscriber management, edge terminations will be deployed

Use cases: Brings in partners from which operator derives revenue

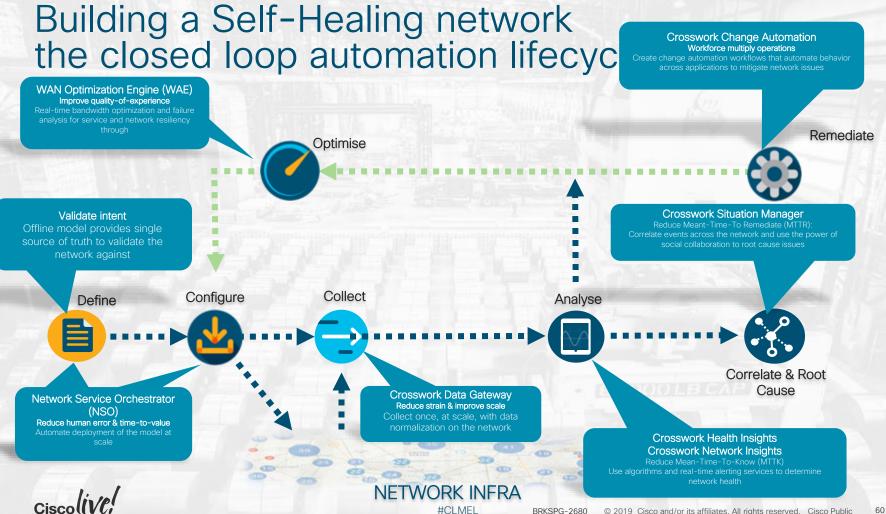

CDN, AR, VR, Connected and Autonomous Vehicle, Fog Computing, Network-Hosted Computing & Enterprise-Hosted Computing

APIs: enable the consumption of edge services in the operator network

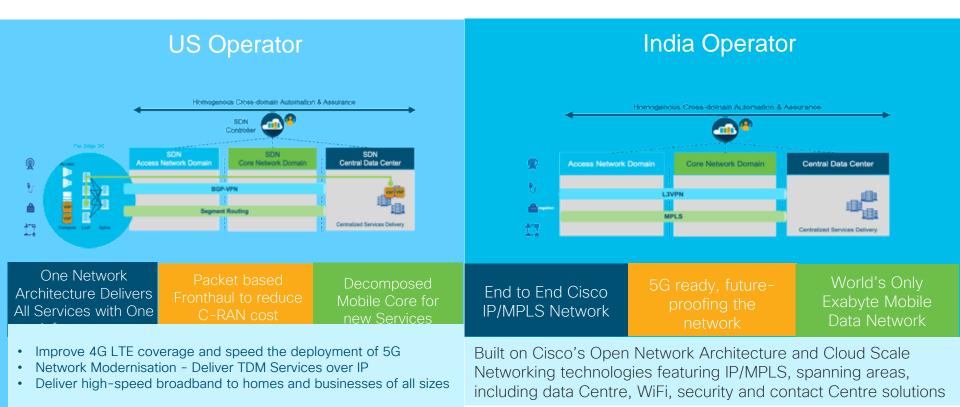

Multi-Access Edge Compute - Edge Transformation


Ciscolive,

Automation



Cisco Automation Portfolio



BRKSPG-2680 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Customer Case Studies

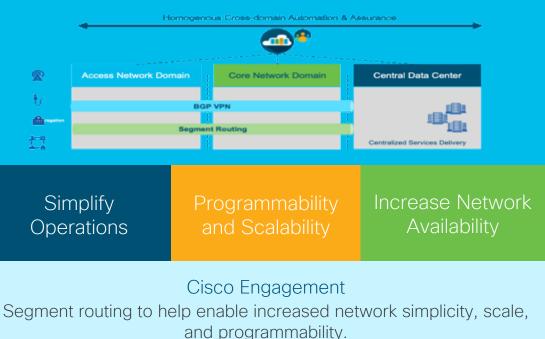
#CLMEL

BRKSPG-2680 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 61

Customer Study

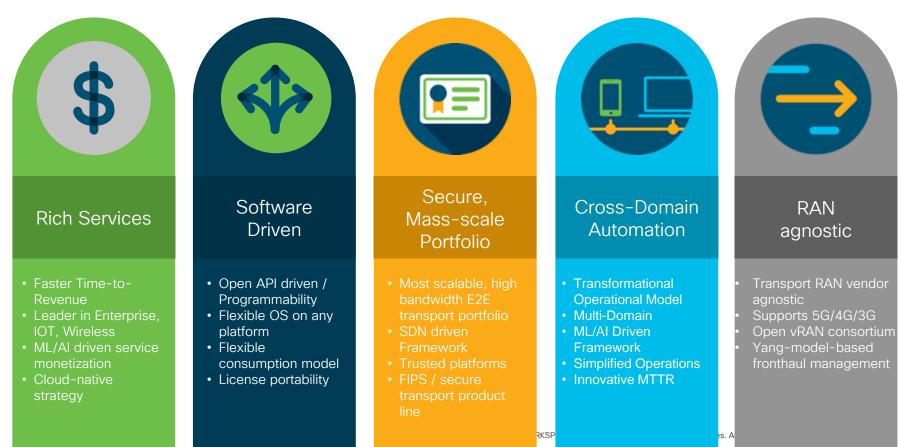
Europe Operator

Leadership in Mass-Scale Networking

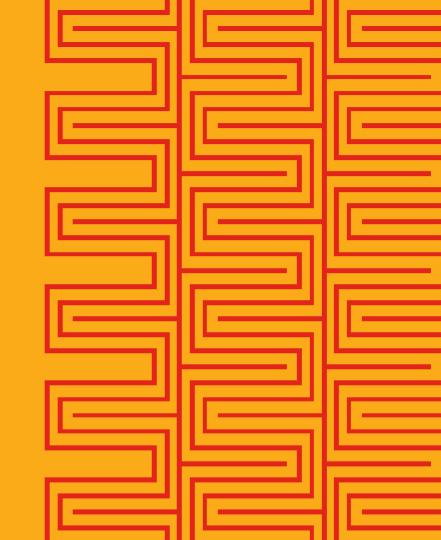

Approach

Building a transport network to improve customer traffic latency

Business Outcomes


- Dramatically simplify by removing RSVP-TE tunnel full mesh
- Simplify fast re-route configuration by 80%
- Enable programmability and scalability reducing latency by 50%
- Increase network availability through sub-50msec protection on each link and node

Mass Scale Networking Europe Operator


Ciscolive!

Why Cisco 5G Network Transport Solution?

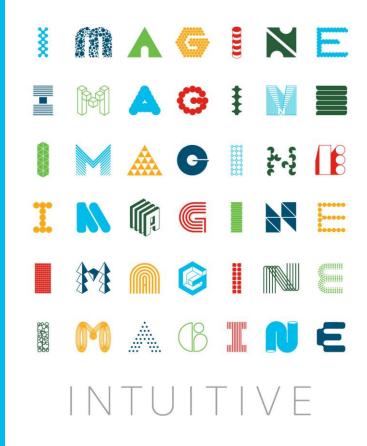
Helpful Links

Cisco xHaul Transport Whitepaper

- "Cisco 5G xHaul Transport" White paper
 - 5G xHaul WP (HTML): https://www.cisco.com/c/m/en_us/network-intelligence/service-provider/digital-transformation/converged-5g-xhaul-transport.html?cachemode=refresh
 - 5G xHaul WP (PDF): <u>https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/mobile-internet/white-paperc11-741529.pdf</u>
- Lightreading "Cisco 5G xHaul Transport" webinar and whitepaper
 - https://www.lightreading.com/webinar.asp?webinar_id=1324
 - <u>https://www.lightreading.com/lg_redirect.asp?piddl_lgid_docid=748878&piddl_lg_pcode=wprightcolumn</u>
- "Cisco 5G xHaul Transport" Podcast
- <u>https://packetpushers.net/podcast/weekly-show-417-meeting-5g-demands-with-ciscos-5g-xhaul-transport-sponsored/</u>
- "5G xHaul Transport" Cisco Knowledge Network (CKN) webinar recording
 - <u>https://www.cisco.com/c/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars.html</u>

Additional Resources

- Cisco 5G Page: <u>WWW.Cisco.com/go/5g</u>
- Cisco's SP Mobility Page:
 - <u>https://www.cisco.com/c/en/us/solutions/service-provider/mobile-internet/index.html</u>
- Compass "Metro Fabric Design" : https://xrdocs.io/design/
- Segment Routing Information:
 - <u>https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/segment-routing.html</u>
 - <u>www.segment-routing.net</u>
- Cisco Telco Page:
 - <u>http://www.cisco.com/go/telco</u>
- Cisco 5G Security White Paper: https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider-security-solutions/5g-security-innovation-with-cisco-wp.pdf
- Cisco EPN5.0 & EPN4.0:
 - <u>https://www.cisco.com/c/en/us/solutions/enterprise/design-zone-service-provider/programmable-network.html</u>



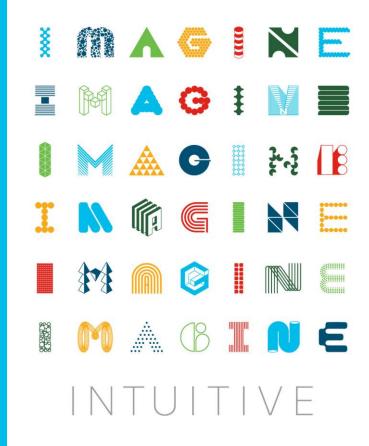
- To cater the divergent requirements of 5G services eMBB, uRLLC & mMTC, Cisco Converged SDN 5G transport enables high bandwidth, low latency & scale in 5G networks
- Cisco Converged Transport Solution is 5G Ready "Today" for Backhaul, Midhaul and C-RAN hub site
- "Converged" supporting wireline as well as wireless (AnyG), secure, simplified operations and resilient
- Massive bandwidth Portfolio, Programmable Transport (SR/BGP VPN) enabling flexible placement of services through end to end IP & Fabric based Cloud-RAN (Far Edge with MEC)
- Concurrent support in transport network for soft transport slicing
- Cisco Converged SDN-Enabled Transport enables more capex efficiency, better opex utilisation, & faster time to service

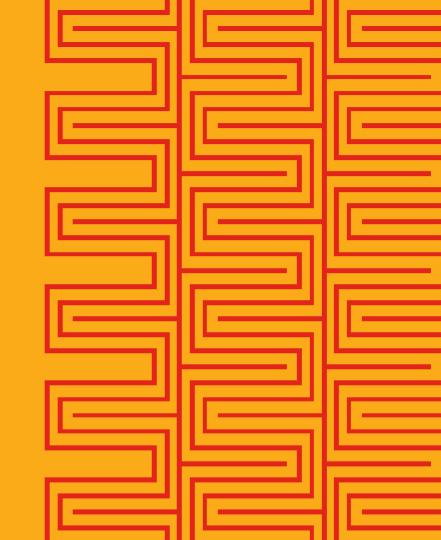
Q & A

Continue your education

Complete Your Online Session Evaluation

- Give us your feedback and receive a complimentary Cisco Live 2019 Power Bank after completing the overall event evaluation and 5 session evaluations.
- All evaluations can be completed via the Cisco Live Melbourne Mobile App.
- Don't forget: Cisco Live sessions will be available for viewing on demand after the event at:


https://ciscolive.cisco.com/on-demand-library/


Thank you

Backup Slides

L3 and L2 Network Efficiencies Are Almost Same!

Data	Packet Overhead	1500 Bytes Packet	2000 Bytes Packet	9000 Bytes Packet
L2 Only	42	1542	2042	9042
(IFG+Preamble+Ethernet+Dot1 Q+CRC)				
L2VPN	64	1564	2064	9064
IFG+Preamble+Ethernet+MPLS 2 Labels+Ethernet				
L3VPN	66	1566	2066	9066
IFG+Preamble+Ethernet+MPLS 2 Labels+IP				
Network Efficiency				
L2 Only		97.28	97.94	99.53
L2VPN		95.91	96.89	99.29
L3VPN		95.79	96.80	99.27
Ciscolive,		#CLMEL BRKS	PG-2680 © 2019 Cisco and/or its affiliates. All	rights reserved. Cisco Public 73

CPRI/eCPRI Peak Throughput Comparison

Parameters	eCPRI/XRAN	CPRI	Units
Carrier size (5G NR)	100	100	MHz
CPRI sampling rate		122.88	MHz
I/Q quantization	8+8	15+15	bits
Number of TRX		64	
Max # of spatial layers	16		
Overhead	17%	10%	
Compression factor		2	
Peak throughput	28	129.8	Gbps
Ratio	4.7		

"5G RAN CU - DU network architecture, dimensioning and performance requirements" by NGMN Alliance

#CLMEL

Dimensioning Transport Network

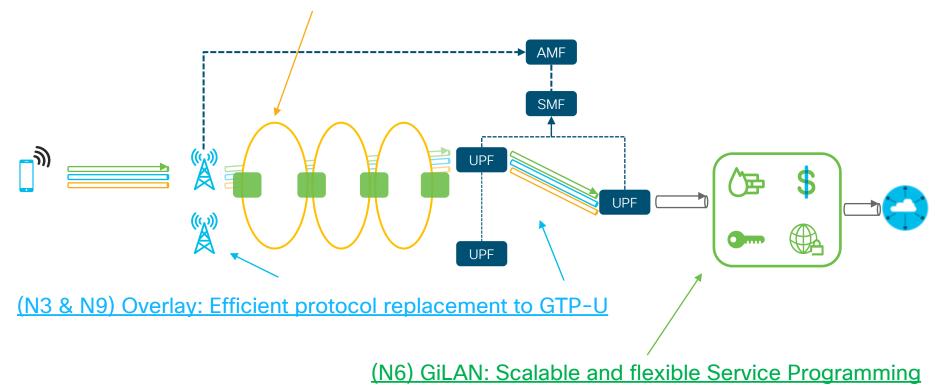
E

- Rule of thumb
 - Transport network should be dimensioned in a way that at least 1 sector with peak rates plus the other two sectors with average data rate is supported.
 - Data rates on the air interface with the new NR mmW
 - Peak data rates up to 4 Gbps (assuming 100 MHz carrier bandwidth, 8 MIMO layer)
- Multiple LTE carriers will be upgraded with a NR carrier.

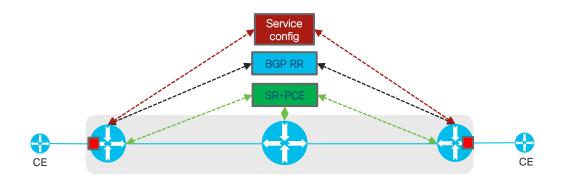
- 10G optical interface, which would be sufficient
 - 25G interface might be the better choice for future proofing

"5G RAN CU - DU network architecture, dimensioning and performance requirements" by NGMN Alliance

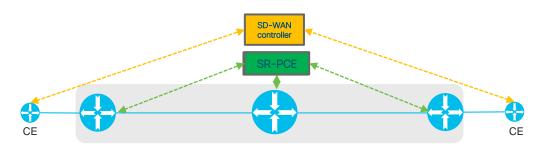
C-RAN Deployment Challenges


- Economically viable availability of fibre Must Requirement
- Economically viable availability of BBU hotel Site Requirement Must Requirement
- Strict transport requirement
 - < 15 KM distance</p>
 - <75-100 us one-way delay</p>

SRv6 Use-Cases for 5G


Is Diffserv QoS "Good Enough" for 5G ?

- Yes, as a transport QoS strategy!
 - Slice b/w / class protection through ingress conditioning and marking
 - Class separation and protection with core scheduling
 - Bandwidth reuse
 - QoS aware capacity planning
- FOR LOW LATENCY SERVICES THE OVERALL DESIGN NEEDS CONSIDERATION
- Network delay = propagation delay + switching delay + scheduling delay + serialization delay
- Proximity of gateway functions to users
 - Reduce propagation delay
- Proximity of applications to users
 - Reduce propagation delay
 - Serialization delay is a consideration for fronthaul applications (TSN)



Service Infrastructure

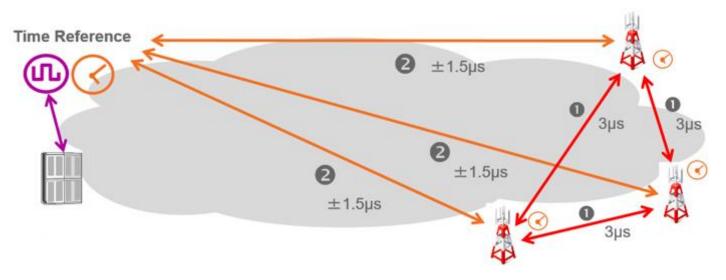
- Network based VPNs
 - 5G based BGP VPNs

- Overlay / SDN-WAN based VPNs
 - Enterprise services
 - Inter-DC communications

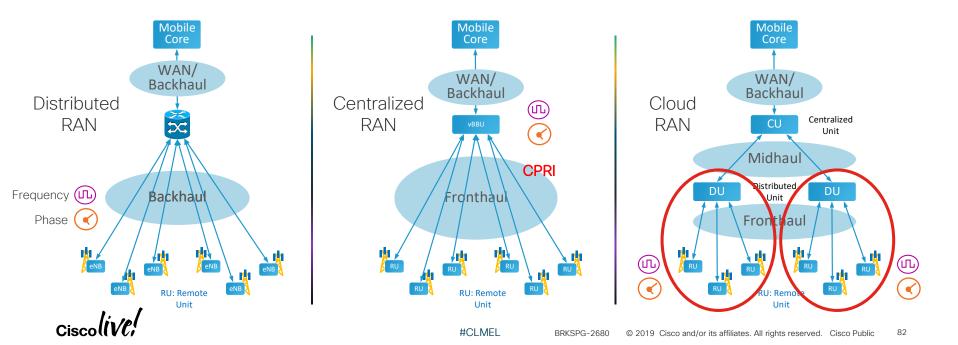
#CLMEL

Frequency and Phase Sync Requirements

Application	Frequency		Phase		Note
	Backhaul	Air	Backhaul	Air	
LTE-FDD	±16 ppb	± 50 pbb			
LTE-TDD	±16 ppb	± 50 pbb	±1.1µs ±4.1µs	±1.5µs ±5µs	< 3Km cell Radius > 3Km cell Radius
LTE-A / LTE-Pro	±50 pbb (Wide area) ±100 pbb (Local area) ±250 pbb (Home eNB)		≤±1.1µs	±1.5µs to 5µs	Depending on the application
LTE eMBMS	±16 ppb	± 50 pbb	≤±1.1µs	±1.5µs to 5µs	Inter-cell time difference


LTE-Advance	Type of Coordination	Phase	
		Backhaul	Air
elClC	Enhanced inter-cell interference Coordination	≤±1.1µs	±1.5µs to 5µs
CoMP Moderate	UL coordinated scheduling	≤±1.1µs	±1.5µs to 5µs
	DL coordinated scheduling	≤±1.1µS	±1.5µs to 5µs
CoMP Tight	DL coordinated beamforming	≤±1.1µs	±1.5µs
	DL non-coherent join transmission	≤±1.1µs	±1.5µs to 5µs
	UL Joint processing	≤±1.1µs	±1.5µs (±130ns)
	UL selection combining	≤±1.1µs	±1.5µs
	UL joint reception	≤±1.1µs	±1.5µs
MIMO	Tx diversity transmission at each Carrier frequency	65ns	±32.5ns

1 nano sec / sec = 1×10^{-9} (1 ppb)


Timing and Synch – New Phase Requirements

- 5G (like modern LTE-A networks) requires phase synchronization
- New 5G TDD radios definitely require it:
 - 3GPP: 3µs between base stations (for TDD, LTE-A radio co-ordination)
 - ❷ Radio backhaul network: ±1.5µs from reference time

Timing and Synch – Fronthaul

- 5G is also re-engineering the Fronthaul network towards Cloud RAN:
 - CPRI to packet-based Fronthaul/Midhaul impacts timing
 - Much tighter requirements for phase alignment budget

Timing and Synch – Solutions

GNSS (GPS, Galileo) Receivers

- Effective solution where site conditions allow (Sky view, \$\$)
- Susceptible to jamming (and increasingly spoofing)
- Time source for cell sites, PTP GM's and monitoring equipment

PTP/1588 and SyncE in Transport Network

- Great solution: G.8275.1 with "on path support" for PTP
- Needs good network design in combination with SyncE
- End-to-end timing "budget" with accurate boundary clocks

All of the Above

- PTP/SyncE as a backup to GNSS receiver outages
- GNSS where it's cost effective, PTP everywhere else

Include GNSS receivers inside routers where appropriate

Routers as high performance T-BC boundary clocks with Class B/C G.8273.2 performance

Flexibility in the design of the equipment allows them to be used in any situation

#CLMEL

Phase Performance – G.8273.2 Boundary Clock Performance

Level	Max Total Time Error* max TE	Constant Time Error cTE	Dynamic Time Error** dTE	
Class A (10 T-BC's)	100 ns	±50 ns	±40 ns	
Class B (20 T-BC's)	70 ns	±20 ns	±40 ns	
Class C (Oct '18)	30 ns	±10 ns	±10 ns	

Cisco

Time Sensitive Networking 802.1CM

- Profile A: Strict priority queuing (no frame pre-emption)
 - Radio data payload frame size max is 2000, C&M max is 1500 octets
 - IQ data traffic belongs to strict priority traffic class strict priority algorithm
 - C&M data assigned to lower priority than IQ data
- Profile B: 802.1Qbu Frame Preemption
 - · Pre-emption useful to avoid restrictions on the maximum frame size
 - Frame Preemption up to 25G links
 - IQ data traffic configured (frame pre-emption status) as "express"
 - C&M data assigned to lower priority than IQ data and set "pre-emptable"

86

Ethernet For CPRI Fronthaul (802.1CM)

- TSN techniques to reduce latency of time-sensitive traffic:
 - Should have frame pre-emption (as per Profile "B")
 - Pre-emption occurs only if 60 octets of pre-emptable frames have been transmitted
 - And at least 64 octets of remain to be transmitted
 - Pre-emption is used to keep max latency to 124 octet times
 - PTP messages in express frames or frames < 124 octets not pre-empted
 - Some configurability on min frame size for pre-emption allowed

802.1Qbu Frame Preemption

- Express frames can suspend the transmission of pre-emptable frames.
- Should have frame pre-emption (as per Profile "B")
 - Pre-emption occurs only if 60 octets of pre-emptable frames have been transmitted
 - And at least 64 octets of remain to be transmitted
- Pre-emption is used to keep max latency to 124 octet times ٠
- PTP messages in express frames or frames < 124 octets (Cannot be Pre-empted)
- Some configurability on min frame size for pre-emption allowed (Increasing the min size which is 124 octets) Cisco **#CLMEL** BRKSPG-2680

87 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Evolution of Time Synchronization

Synchronization

Fundamental need for any Telecommunication

Analog to Digital Transition

- Synchronous protocols
- Bulk Data Transfer

Asynchronous Packet Switched network

- Better Bandwidth
- improved efficiency and
- Services flexibility

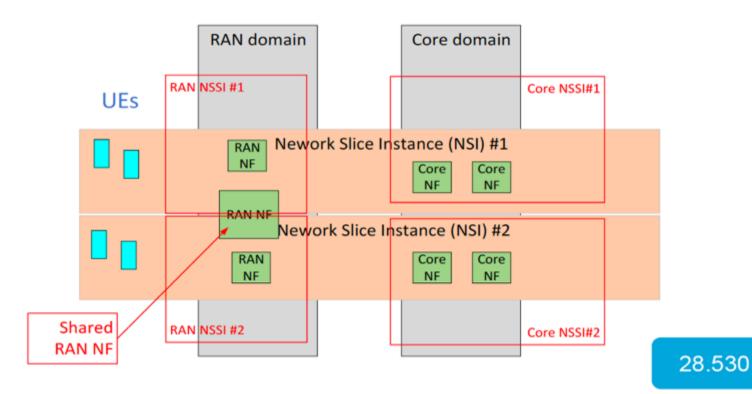
End to End IP

- Improved user experience "Any service Any Where"
- Improved revenue with Multi-Services convergence

#CLMEL

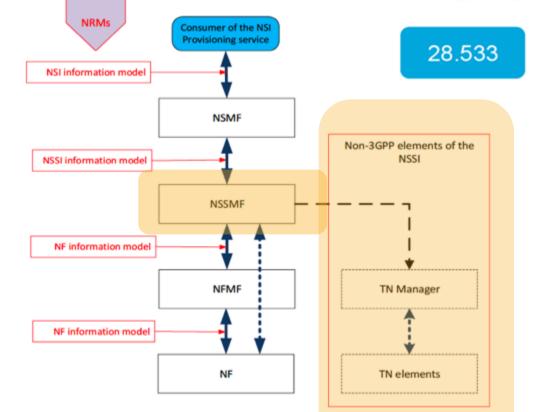
802.1CM for Deterministic Latency

Mode	Radio Traffic	Enterprise Traffic
Strict Priority	Excellent Service Each Node: Moderate ENT queuing delay Each Node: Self-queuing delay	CIR met. SLAs may not guaranteed for Jitter and Delay.
Strict Priority + Preemption	Excellent Service Lowest Latency Each Node: Small ENT queuing delay Each Node: Self-queuing delay	CIR met. Latency / Jitter impact increased due to heavy preemption


	Fronthaul Max. Latency (us)			Fronthaul	Frame Delay Var	iation (us)
Scenario	1 node	2 node	3 node	1 node	2 node	3 node
SP	3.1	6.3	9.3	3.0	6.0	8.9
SP+P(Qbu*)	0.2	0.4	0.6	0.1	0.2	0.2

SP= Strict Priority SP+P = Strict Priority + Frame Preemption

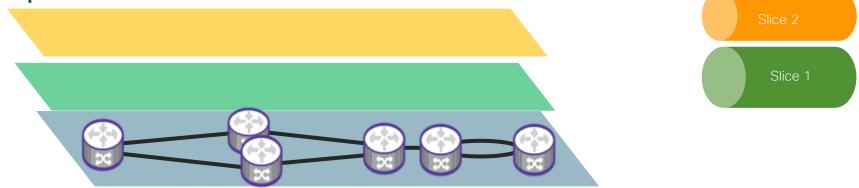
Network Slice Instance (NSI) Network Slice Subnet Instance (NSSI)



Ciscolive,

Functional management architecture: slicing

- Network Slice Management Function (NSMF) provides the management services for one or more NSIs
- Network Slice subnet Management Function (NSSMF) provides the management services for one or more NSSIs
- The NF management Function (NFMF) provides NF performance, NF configuration and NF fault supervision management services


Ciscolive,

NSSI / NSI Data Model: some parameters

Attribute Name	Documentation and Allowed Values				
constituentNSSIList	It is a list IDs of the constituent NSSIs associated with the NSSI or NSI				
nNSIId	An attribute uniquely identifies the network slice instance.				
perfReq	The perfromance requirements to the NSI, such as				
	Experienced data rate, Area traffic capacity (density)				
	information of UE density				
sNSSAIList	The S-NSSAI list to be supported by the NSI				
coverageAreaTAList	A list of <trackingarea> where the NSI can be selected.</trackingarea>				
latency	Packet transmission latency (ms) through the RAN, CN, and				
	TN part of 5G network				
resourceSharingLevel	Whether the resources used by the NSI may be shared with another NSI(s).				
sliceProfileList	A list of SliceProfile sets supported by the NSSI network				
slice sST	The slice/service type of the network slice. 28.541				

Slicing in the Underlay Based on SLA Requirements

- Small number of slice planes defined in underlay (across domains)
 5G mobility slices (eMBB, URLLC, mIOT, signalling, etc.)
 Major Service Type (Wholesale, MVNO, Enterprise, Content, etc.)
- Each Slice plane characterized by

Optimization + constraint objective : latency, bandwidth, reliability, topological constraints

93

• Engineered based on a flex-algorithm (SPF included) or pt-2-pt SR policies

• Slice planes can be "hard" or "soft" depending how they are engineered #CLMEL BRKSPG-2680 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

References

• TS 23.501 Section 5.15 (Network Slicing)

• TS 23.503 Section 6.1.2.2 (URSP, NSSP)

• TS 38.300 Section 16.3 (Network Slicing)

Relevant specifications Management and orchestration of networks and network slicing

TS 28.530	Concepts, use cases and requirements	
TS 28.531	Provisioning	
TS <u>28.532</u>	Generic management services	
TS <u>28.533</u>	Architecture framework	
TS <u>28.540</u>	5G Network Resource Model (NRM); Stage 1	
TS <u>28.541</u>	5G Network Resource Model (NRM); Stage 2 and stage 3	
TS <u>28.550</u>	Performance assurance	
TS <u>28.552</u>	5G performance measurements	
TS <u>28.554</u>	5G End to end Key Performance Indicators (KPI)	

Key Characteristics

Functional Decomposition Functions separated to allow flexible placement and optimization

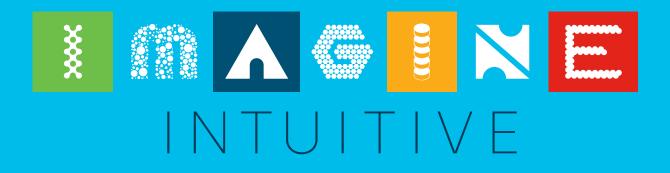
Multi-Use Case 5GNR, LTE, small cell, indoor/outdoor, mMIMO, low, mid, high-band, mmWave, private/public, enterprise/consumer, etc

Disaggregation into SW + HW Software-centric solutions leveraging COTS hardware

Optimize for Lower Cost Operations Agility, Lower TCO, Increased Automation

Open Modular, Open, Multi-vendor, more options = flexibility and lower cost

Enable New Services Increased service flexibility, velocity



xRAN Forum Merger of XRAN & CRAN to form ORAN

- Defining an **open**, **multi-vendor interoperable**, **bandwidth efficient**, split-PHY fronthaul interface. Addressing key operator requirements:
 - BBU RU interoperability based on well specified control, user and management plane interfaces.
 - IP/Ethernet based transport layer solutions.
 - Extensible data models for management functions to simplify integration.
- Option 7.2x split uses eCPRI transport payload now also 1914.3
 - Lower Layer Split Central Unit (IIs-CU) controlling Radio Unit (RU)
 - First time NETCONF/YANG is defined for use in the RAN

ıılıılıı cısco

